YES 0.769 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Monad.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Monad
  ((foldM_ :: (b  ->  a  ->  Maybe b ->  b  ->  [a ->  Maybe ()) :: (b  ->  a  ->  Maybe b ->  b  ->  [a ->  Maybe ())

module Monad where
  import qualified Maybe
import qualified Prelude

  foldM :: Monad a => (b  ->  c  ->  a b ->  b  ->  [c ->  a b
foldM a [] return a
foldM f a (x : xsf a x >>= (\fax ->foldM f fax xs)

  foldM_ :: Monad a => (c  ->  b  ->  a c ->  c  ->  [b ->  a ()
foldM_ f a xs foldM f a xs >> return ()


module Maybe where
  import qualified Monad
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\faxfoldM f fax xs

is transformed to
foldM0 f xs fax = foldM f fax xs

The following Lambda expression
\_→q

is transformed to
gtGt0 q _ = q



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule Monad
  ((foldM_ :: (b  ->  a  ->  Maybe b ->  b  ->  [a ->  Maybe ()) :: (b  ->  a  ->  Maybe b ->  b  ->  [a ->  Maybe ())

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  foldM :: Monad a => (b  ->  c  ->  a b ->  b  ->  [c ->  a b
foldM a [] return a
foldM f a (x : xsf a x >>= foldM0 f xs

  
foldM0 f xs fax foldM f fax xs

  foldM_ :: Monad b => (c  ->  a  ->  b c ->  c  ->  [a ->  b ()
foldM_ f a xs foldM f a xs >> return ()



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Monad
  ((foldM_ :: (a  ->  b  ->  Maybe a ->  a  ->  [b ->  Maybe ()) :: (a  ->  b  ->  Maybe a ->  a  ->  [b ->  Maybe ())

module Monad where
  import qualified Maybe
import qualified Prelude

  foldM :: Monad b => (a  ->  c  ->  b a ->  a  ->  [c ->  b a
foldM vw a [] return a
foldM f a (x : xsf a x >>= foldM0 f xs

  
foldM0 f xs fax foldM f fax xs

  foldM_ :: Monad a => (c  ->  b  ->  a c ->  c  ->  [b ->  a ()
foldM_ f a xs foldM f a xs >> return ()


module Maybe where
  import qualified Monad
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule Monad
  (foldM_ :: (b  ->  a  ->  Maybe b ->  b  ->  [a ->  Maybe ())

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  foldM :: Monad b => (c  ->  a  ->  b c ->  c  ->  [a ->  b c
foldM vw a [] return a
foldM f a (x : xsf a x >>= foldM0 f xs

  
foldM0 f xs fax foldM f fax xs

  foldM_ :: Monad b => (c  ->  a  ->  b c ->  c  ->  [a ->  b ()
foldM_ f a xs foldM f a xs >> return ()



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
QDP
                  ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(wu3, wu51, h, ba) → new_gtGtEs0(wu3, wu51, h, ba)
new_gtGtEs0(wu3, :(wu50, wu51), h, ba) → new_gtGtEs(wu3, wu51, h, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: